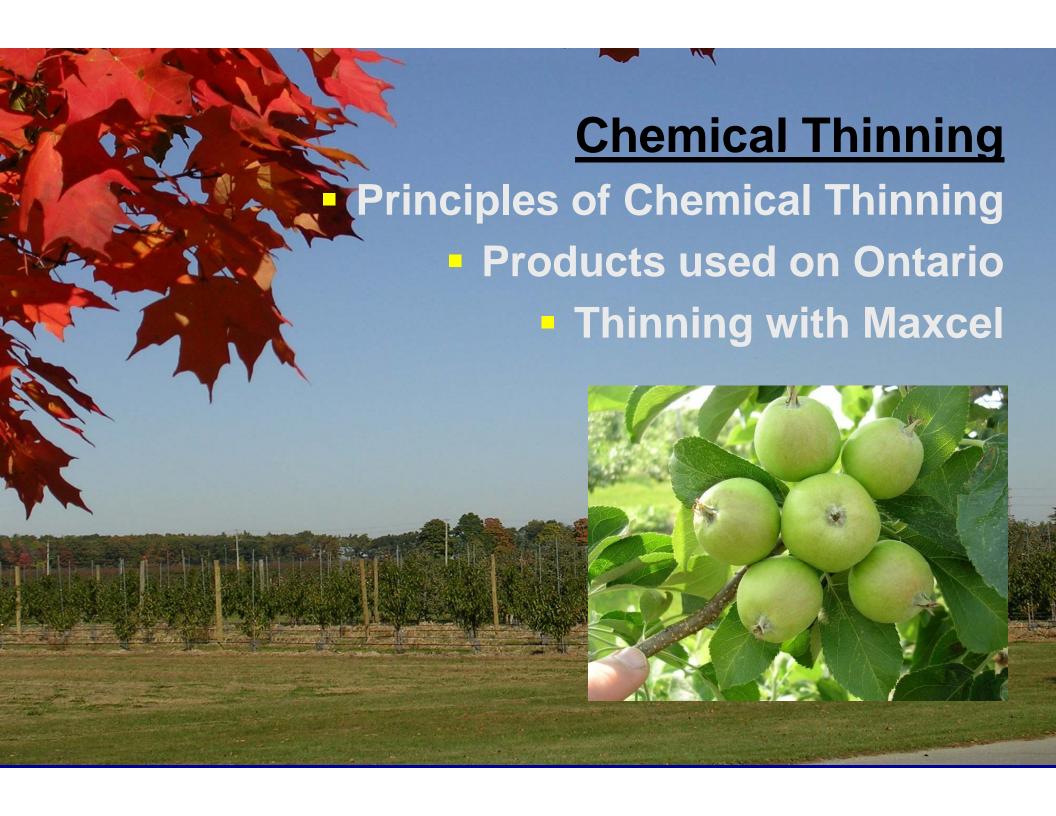
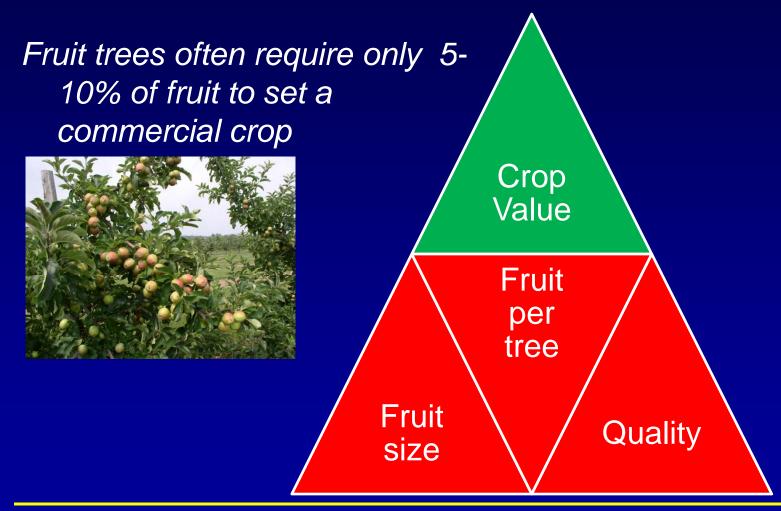


Bioregulators Used In Tree Fruits

Natural Plant Growth Substances


- 1. Gibberellins involved in flowering, cell elongation, dormancy, delay senescence, induce maleness in dioecious flowers
- 2. Auxins apical dominance, ripening, flowering
- 3. Cytokinins stimulate cell division, growth of lateral buds
- 4. Ethylene release of dormancy, stimulates leaf and fruit abscission, induction of femaleness in dioecious flowers, stimulates flower and leaf senescence, stimulates fruit ripening.
- 5. Abscisic Acid dormancy, water stress

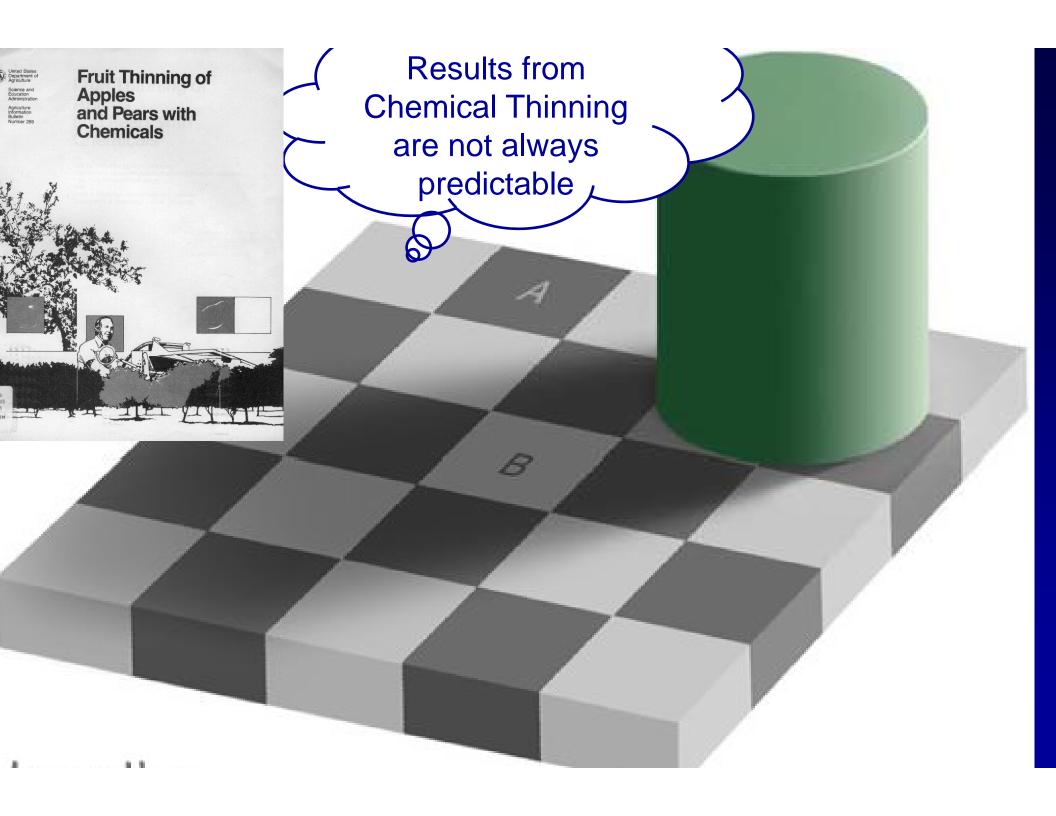

Reference http://www.plant-hormones.info/index.htm


co

Function	Products Available	Research Experience
1. Inhibit Flowering	GA ₃ , GA ₄ , GA ₇	Apples, Peaches, Cherries
2. Promote Flowering	Ethrel, NAA	Apple
3. Influence fruit ripening and quality	GA ₃ , GA ₄ , GA ₇ , Ethrel, Retain	Cherries, Apples, Peach
4. Fruit thinning	Carbaryl*, NAA, BA, Surfactants, Ehtrel	Apple, Peach
5. Influence ethylene synthesis	Ethrel, MCP, ReTain	Apple, Peach
6. Fruit finish	GA, Koalin Clay*	Apple,
7. Change fruit shape	Benzyl adenine (BA)	Apple
8. Reduce Preharvest drop	NAA, ReTain	Apple, Peach
9. Reduce Vegetative growth	Apogee	Apple, Peach
* - these products are not plant g	rowth regulators	

Economics of Thinning

Registered Chemical Thinners for Apples in Canada



- 1. Fruitone N (NAA)
- 2. Carbaryl (Sevin XLR+)
- 3. 6-BA (Accel/Maxcel)

Hand Thinning – Least Desirable

Suggested products and rates for chemical thinning various cultivars

TABLE 7-20. Suggested Rates for Chemical Thinning of Mature Apple Trees¹

					7. 37. 83	Sevin XLR
Cultivar	NAD ppm²	NAA ppm²	Sevin XLR L/1,000 L	Sevin XLR +NAA ppm² per 1,000 L water	Accel (g BA/ha)³	(L/1,000 L water) ² + Accel (g BA/ha) ³
Lodi, Melba, Quinte, Yellow Transparent	50-75	_	_	1 L + 10-15 ppm	-	_
Early McIntosh	75–100	e <u>erja</u> e lis eerjares		1 L + 5-10 ppm (at petal fall)	50-75	
Jerseymac, VistaBella, Tydeman's Red	-	5–10	1–1.5	-	-	
Paulared	50-75	12-15	1-1.5	1 L + 10-15 ppm	75	1 L + 50
Spartan, Russets		10-20	1-2	1 L + 10-15 ppm		-
Cortland	_	5-10	_	1-2 L + 2.5-5 ppm	-bagaii	k - ekstajani
Ambrosia		_	1-1.5	_	-	
Silken		-	1-1.5		_0900000	
Cameo			1	_		
Non-spur McIntosh		5-10	1-2	_	50	
Spur-type McIntosh		10-12		1-2 L + 2.5-5 ppm	50-75	1 L + 50
Golden Delicious, Wealthy	75–100	10-20	1–2	1 L + 5–10 ppm	75	1–2 L + 50
Golden Supreme			1	_	-	
Goldrush				1 L+10 ppm	_	
Red Delicious		2-8	0.5-1.5	_	-	_
Spur-type Red Delicious	_ 8/01	5-10		1-2 L + 5-10 ppm	- 50500	a - prened tegs.
ldared	_	2-8	_	-	50	
Empire	- radion	7–10	1-1.5	1 L + 2.5-4 ppm	50-75	1 L + 50
Spy, Crispin (Mutsu)	-	5-10	0.5-1.5	-		
Jonagold		9-00	1-1.5	-	50-75	
Fuji	-	-	_	1-1.5 L + 10-12 ppm		1-2 L + 50-75
Gala	_	10-12	_	1 L + 5-10 ppm	75	1-2 L + 50
Honeycrisp	_	5	1-1.5	1 L + 2.5 ppm	-	
Gingergold	_	7-10	1-1.5	1 L + 2.5-5 ppm	_	1 L + 50

[&]quot;-" Indicates treatment recommendation not available.

Note: The rales for Sevin are amounts of product. Sevin XLR is 43% active ingredient and contains 480 g or approximately 0.5 kg of carbaryl/litre. One litre of Sevin XLR is roughly equivalent to 1 kg of Sevin 50 W. For actual amounts of NAD and NAA refer to the label of the product being used.

¹ The above rates are suggested for trees with a settled cropping history. To chemically thin a first crop tree or trees considered to be immature is very risky.

² Sufficient water volumes must be used to thoroughly wet trees. See Steps in Thinning on page 130.

³ Consult Table 7-18, Accel Rate, on page 128, to determine the actual ppm benzyladenine (BA) being applied. Concentration of BA should be no less than 50 ppm to be effective. 1 L of Accel contains approx. 19 grams of BA.

Cultivar Sensitivity to Chemical Thinners

Easy to Thin

- Braeburn
- Crispin
- Ginger Gold
- Idared
- Jerseymac
- Jonagold
- Jonathan
- Red Del
- Ambrosia
- Honeycrisp

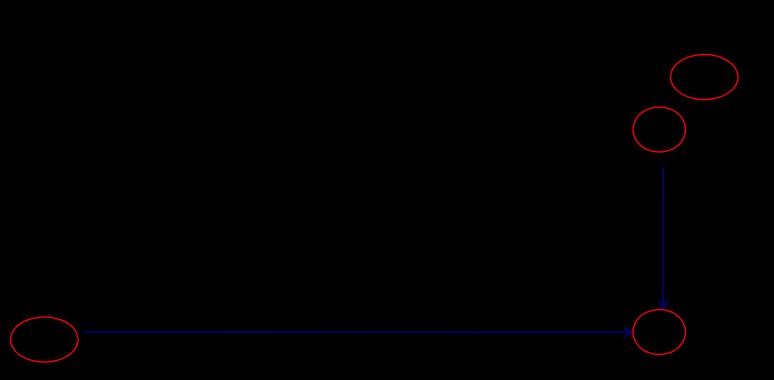
Intermediate to Thin

- Cortland
- Empire
- Jonamac
- McIntosh
- Nothern Spy
- Gala

<u>Difficult to Thin</u>

- Fuji
- Golden Delicious
- Lodi
- Rome
- Spartan
- Spur Red Delicious

Wealthy



Thinning Products and Rates of Activity

	NAA (ppm)	Accel (ppm)	Sevin (L/ha)	Accel + Sevin (ppm, L/ha)	NAA+Sevin (ppm, L/ha)
Mild	5	50	1.0	-	
Moderate	10	75	1.5	50, 0.5	5, 0.5
Aggressive	15	-	-	75, 1.0	10-15, 1.0

Timing

- ✓ NAD Amidthin (King Bloom petal fall)
- ✓ Accel 8-12 mm
- Sevin XLR Petal Fall 21 Days after Full Bloom
- ✓ NAA Bloom 12 mm (later applications tend to reduce fruit size)
- ✓ apply prior to warming trends as increasing temperatures promote the thinning response
- Bright sunny days following applications tend to decrease the thinning response
- ✓ Higher night temperatures increase the thinning response

Water Volume of water and Spray Distribution

- Apply sufficient water to obtain good foliage and fruitlet coverage.
- Do not concentrate beyond 2X or 1000 litres per hectare
- Apply 65-90 % of water volume to the top of the tree canopy (except super spindle)

Blossom Thinning

Not widely adopted in Ontario. ATS works but often causes phytotoxicity

Advances in Blossom Products

- Ammonium thiosulphate (ATS) is effective, but remains unregistered, not certified organic
- Other natural compounds and surfactants being tested
- Likely adopted commercially in combination with a fruitlet thinning program
- Phytotoxicity and risk of frost major barriers

Thinning Gala with Maxcel

Maxcel

- Adequately thinned
- Improved fruit size beyond effect of hand thinning
- Worked effectively with Sevin

Table 5. Effect of Maxcell on yield, fruit number and fruit size of 'Gala'/M.26 apple trees. University of Guelph, Simcoe, Ontario, 2004.

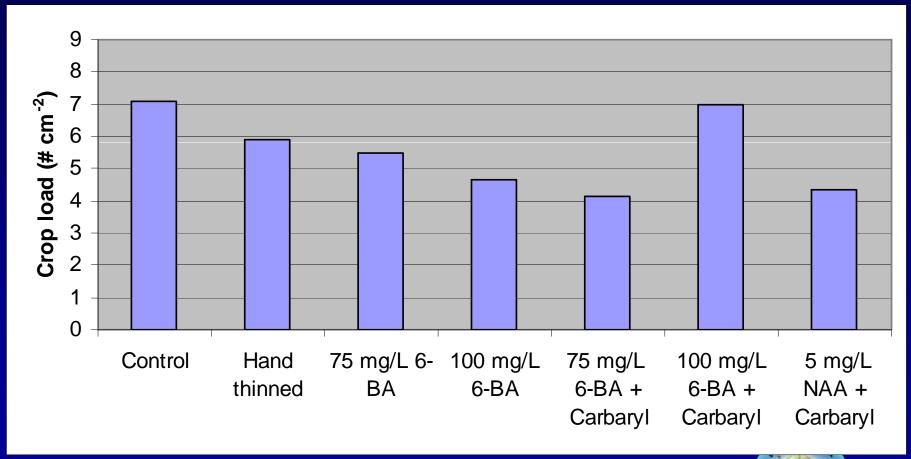
Treatment	Rate (mg/L)	Yield (kg.tree ⁻¹)	Total number fruit per tree	Mean fruit weight (g)	Crop density (#.cm ⁻²)
Untreated Control	(111g/ =/	36.0	229	158.6	7.1
Hand thinned control		30.5	167	182.3	5.9
Maxcel	75	33.6	183	184.9	5.5
Maxcel	100	23.8	134	178.7	4.6
Maxcel + Carbaryl ^x	75	23.7	127	188.2	4.1
NAA + Carbaryl ^x	5	23.3	120	198.1	4.3
significance ^z		***	***	***	***
LSD (P=0.05)		3.85	23.7	12.81	1.15
P value		< 0.0001	<0.0001	< 0.0001	< 0.0001

^{*} Carbaryl XLR Plus applied at 750 ppm

^z ns, ***, **, *, indicates non significance and statistical significance at P=0.001, P=0.01, and P=0.05, respectively

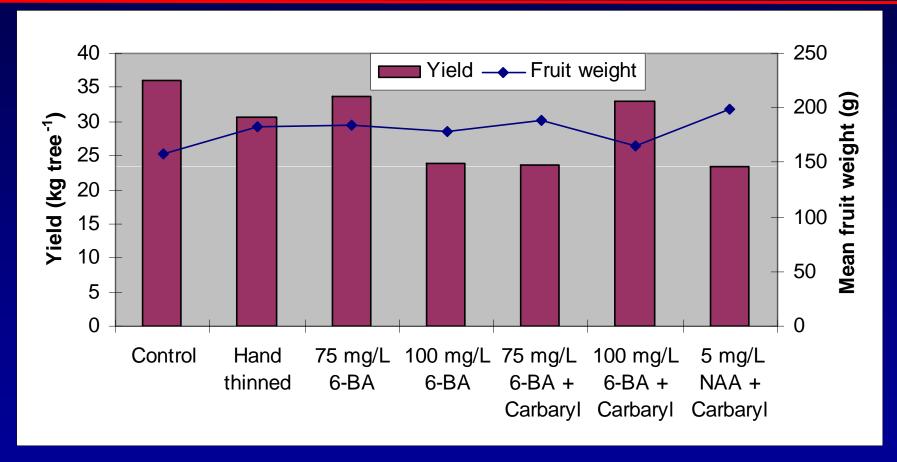
Thinning Gala with MaxCel (BA)

- Adequately thinned
- Improved fruit size beyond effect of hand thinning
- Worked effectively with Sevin

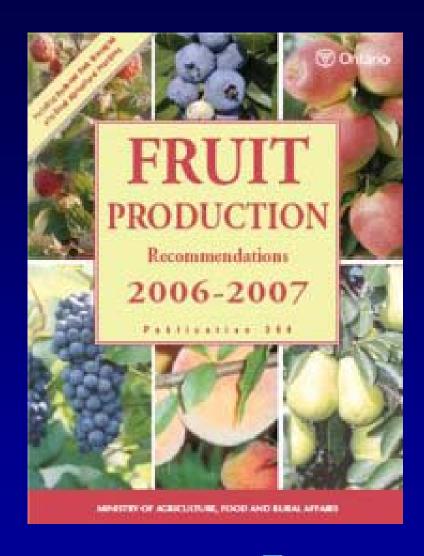

Table 3. Effect of Maxcel and Carbaryl on yield, fruit number and fruit size on 10-yr-old 'Royal Gala'/Bud.9 apple trees. University of Guelph, Simcoe, Ontario, 2007.

		TCSA			Total	Mean	
		fall		Yield	number	fruit	Crop
	Rate	2007	Yield	efficiency	fruit per	weight	density
Treatment	(mg/L)	(cm ²)	(kg.tree ⁻¹)	(kg.cm ²)	tree	(g)	(#.cm ⁻²)
Untreated Control		41.2	25.0	0.61	187.5	137.4	4.3
Hand thinned control (every other spur)		43.0	20.7	0.49	131.9	160.3	3.2
Maxcel	75	37.4	23.8	0.65	186.9	137.9	5.3
Maxcel	100	45.4	28.9	0.65	186.8	156.1	4.2
Maxcel + Carbaryl	75,750	41.3	15.9	0.40	94.3	175.6	2.4
Maxcel + Carbaryl	100,750	40.3	14.6	0.45	81.1	188.1	2.5
Exilis	75	46.0	33.0	0.72	229.8	146.6	5.0
Exilis	100	38.6	24.4	0.66	175.9	144.3	4.8
Exilis + Carbaryl	75, 1000	43.9	16.9	0.36	107.4	168.3	2.4
Exilis + Carbaryl	100, 1000	41.3	13.6	0.32	87.9	174.2	2.1
significance ^z		ns	**	*	***	***	**
LSD (P=0.05)		7.74	9.83	0.25	75.42	23.25	1.98
P value		0.4294	0.0012	0.0155	0.0004	<0.0001	0.0030

^z ns, ***, **, *, indicates non significance and statistical significance at P=0.001, P=0.01, and P=0.05, respectively



Effect of 6-BA and Carbaryl on Gala Crop Load


Effect of 6-BA and Carbaryl on Gala Yield and Fruit Size

Thinning Resources

- Updated Thinning Information
- Cultivar Sensitivity
- Table of Contents

Function	Products Available	Research Experience
1. Inhibit Flowering	GA ₃ , GA ₄ , GA ₇	Apples, Peaches, Cherries
2. Promote Flowering	Ethrel, NAA	Apple
3. Influence fruit ripening and quality	GA ₃ , GA ₄ , GA ₇ , Ethrel, Retain	Cherries, Apples, Peach
4. Fruit thinning	Carbaryl*, NAA, BA, Surfactants,	Apple, Peach
5. Influence ethylene synthesis	Ethrel, MCP, ReTain	Apple, Peach
6. Fruit finish	GA, Koalin Clay*	Apple,
7. Change fruit shape	Benzyl adenine (BA)	Apple
8. Reduce Preharvest drop	NAA, ReTain	Apple, Peach
9. Reduce Vegetative growth	Apogee	Apple, Peach
* - these products are not plant g	rowth regulators	

Gibberellin-Based Growth Regulators

Products: Activol/Progibb and Promalin

- Apple Reduce russeting (G. Delicious)
 - Mixture of GA₄₊₇
 - Improve fruit quality
- 2. Improve apple size and shape
 - used on Red Delicious for typiness
 - effective on Royal Gala

Function	Products Available	Research Experience					
1. Inhibit Flowering	GA ₃ , GA ₄ , GA ₇	Apples, Peaches, Cherries					
2. Promote Flowering	Ethrel, NAA	Apple					
3. Influence fruit ripening and quality	GA ₃ , GA ₄ , GA ₇ , Ethrel, Retain	Cherries, Apples, Peach					
4. Fruit thinning	Carbaryl*, NAA, BA, Surfactants,	Apple, Peach					
5. Influence ethylene synthesis	Ethrel, MCP, ReTain	Apple, Peach					
6. Fruit finish	GA, Koalin Clay*	Apple,					
7. Change fruit shape	Benzyl adenine (BA)	Apple					
8. Reduce Preharvest drop	NAA, ReTain	Apple, Peach					
9. Reduce Vegetative growth	Apogee	Apple, Peach					
* - these products are not plant g	- these products are not plant growth regulators						

Ethylene Related Bioregulators

Ethephon, Aminoethoxyvinylglycine

Ethephon (Ethrel)

- liquid compound that dispenses C₂H₂
- accelerate ripening at harvest (use cautiously)
- Can use on non-bearing trees to enhance flowering the following year

Gibberellic Acid for Sweet Cherries

- preharvest sprays extend harvest season of cherries
- larger firmer fruit, less bruising (pitting) in storage
- used widely in industry

Objectives

To determine the benefits of GA₃ on:

- 1. Fruit size
- 2. Fruit firmness
- 3. Fruit maturity (harvest)
- 4. Rain-cracking

Secondary objectives were to investigate:

- Application timing
- 2. Product formulation (Progibb 4 and Progibb 40%)

Methodology

- A series of experiments conducted (2002-2007)
- Rates: 20-80 mg/L GA₃(Progibb 40%)
- Air blast applications
- Single trees
- Fruit quality measurements included: fruit firmness, surface colour, soluble solids, fruit weight, and rain-induced fruit cracking

Okanagan Packinghouse Fieldmans' Meeting - F

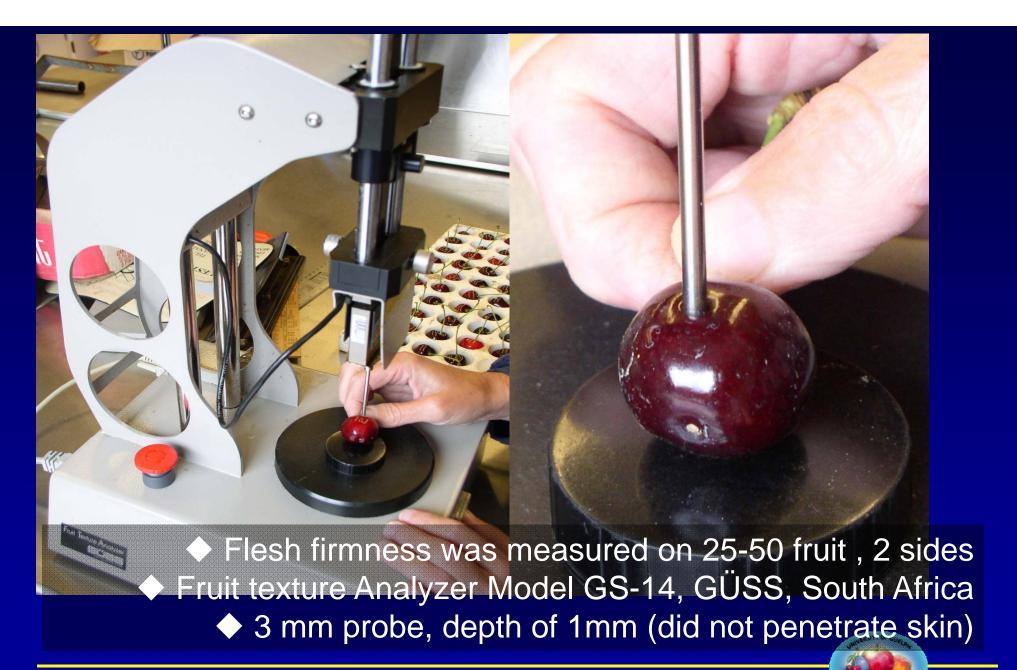


Table 1. Effect of giberillic acid treatment on fruit colour and firmness of 'Hedelfingen' cherries. Vineland, 2007.

βA₃ (mg/L)	Timing	Fomulation	Firmnes s (kg) ^z		Colour L value (lightness)		Mean fruit weight (g)		Brix (°)
					1st	pick ((July 11)		
Jntreated	-	-	0.16	С	31.5	d	7.6		16.3
20	straw colour	Progibb 40%	0.18	b	34.7	b	7.5		17.8
Ю	straw colour	Progibb 40%	0.19	а	34.5	b	7.7		17.9
O	straw colour	Progibb 40%	0.20	а	35.3	а	6.3		16.2
20	10 prior to straw colour	Progibb 40%	0.18	b	33.5	С	7.3		17.0
20	straw colour + 10 days prior	Progibb 40%	0.17	b	34.8	ab	6.9		15.9
20	straw colour	Progibb 4%	0.17	b	33.0	С	7.3		17.1
Ю	straw colour	Progibb 4%	0.18	b	35.0	ab	6.3		16.0
Significance ^z			***		***		ns		ns
SD (p=0.05)			0.01		0.5		2.8		2.0
^o value			< 0.0001		< 0.0001		0.7524		0.7112
					2nd	pick	(July 18)		
Jntreated	-	-	0.10	е	31.0	d	8.9	abc	17.1
20	straw colour	Progibb 40%	0.18	а	31.3	d	10.0	а	15.0
Ю	straw colour	Progibb 40%	0.17	а	32.1	bc	8.2	bcd	18.6
Ю	straw colour	Progibb 40%	0.16	b	32.3	bc	8.8	abc	16.7
20	10 prior to straw colour	Progibb 40%	0.13	d	32.4	b	9.3	ab	18.8
20	straw colour + 10 days prior	Progibb 40%	0.14	С	33.2	а	7.9	bcd	15.9
20	straw colour	Progibb 4%	0.13	d	31.8	С	7.7	cd	17.3
	straw colour	Progibb 4%	0.12	d	33.2	а	7.0	d	14.4
Significance ^z			***		***		*		ns
SD (p=0.05)			0.01		0.5		1.6		3.3
^o value			< 0.0001		< 0.0001		0.0154		0.1115
3 mm probe									

Summary of GA effects

- Progibb has consistently increased fruit firmness and had a slight effect on fruit colour (harvest)
- Inconsistent treatment effects on fruit weight, and rain cracking
- Progibb 40% was more effective than Progibb
 4% in enhancing fruit firmness and size

Function	Products Available	Research Experience				
1. Inhibit Flowering	GA ₃ , GA ₄ , GA ₇	Apples, Peaches, Cherries				
2. Promote Flowering	Ethrel, NAA	Apple				
3. Influence fruit ripening and quality	GA ₃ , GA ₄ , GA ₇ , Ethrel, Retain	Cherries, Apples, Peach				
4. Fruit thinning	Carbaryl*, NAA, BA, Surfactants,	Apple, Peach				
5. Influence ethylene synthesis	Ethrel, MCP, ReTain	Apple, Peach				
6. Fruit finish	GA, Koalin Clay*	Apple,				
7. Change fruit shape	Benzyl adenine (BA)	Apple				
8. Reduce Preharvest drop	NAA, ReTain	Apple, Peach				
9. Reduce Vegetative growth	Apogee	Apple, Peach				
* - these products are not plant growth regulators						

PBRs to Enhance Flowering

Ethrel (Ethephon) 150 mg/l
NAA (Fruitone-N) – 5 mg/l
Have been used
independently at low
concentrations during
June-July to enhance
return bloom the following
season

Flower Induction & Development

Induction

2-6 weeks after full bloom

Development

6 wks to bloom following year

Most floral parts are present by harvest

Ethrel on Non Bearing Trees

- Ethrel sprays can successfully be used to enhance the return bloom of non-bearing
- Higher rates can be used since there is no concern of excessive fruit thinning.
- Single applications (early July) between 1000-1500 mg·litre-1 Ethrel are as effective as split applications at 50% of these rates. A reduction in tree growth can be expected in the season of application.

Ethrel on Bearing Trees

- Lower rates of 150 or 300 mg·litre-1 significantly improved the return bloom of 'Empire' and 'Fuji', respectively.
- At least two applications (early July, 1 wk apart) are required to obtain this benefit.
- Three sprays of NAA at 4 mg·litre⁻¹ was effective for enhancing the return bloom of 'Empire' but not 'Fuji' or 'Jonagold'.

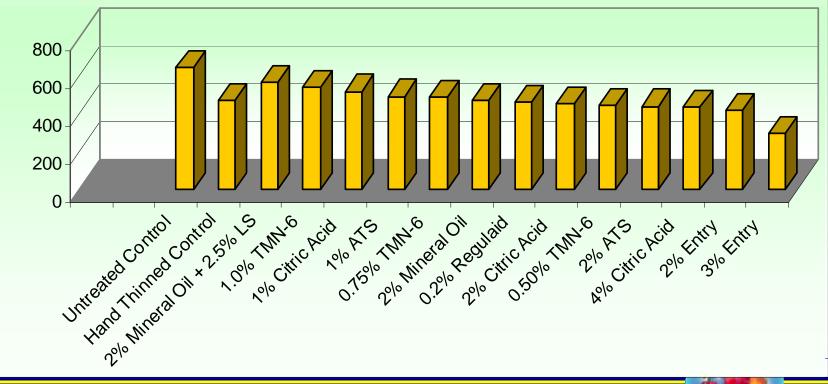
Function	Products Available	Research Experience
1. Inhibit Flowering	GA ₃ , GA ₄ , GA ₇	Apples, Peaches, Cherries
2. Promote Flowering	Ethrel, NAA	Apple
3. Influence fruit ripening and quality	GA ₃ , GA ₄ , GA ₇ , Ethrel, Retain	Cherries, Apples, Peach
4. Fruit thinning	Carbaryl*, NAA, BA, Surfactants, Ehtrel	Apple, Peach
5. Influence ethylene synthesis	Ethrel, MCP, ReTain	Apple, Peach
6. Fruit finish	GA, Koalin Clay*	Apple,
7. Change fruit shape	Benzyl adenine (BA)	Apple
8. Reduce Preharvest drop	NAA, ReTain	Apple, Peach
9. Reduce Vegetative growth	Apogee	Apple, Peach
* - these products are not plant growth regulators		

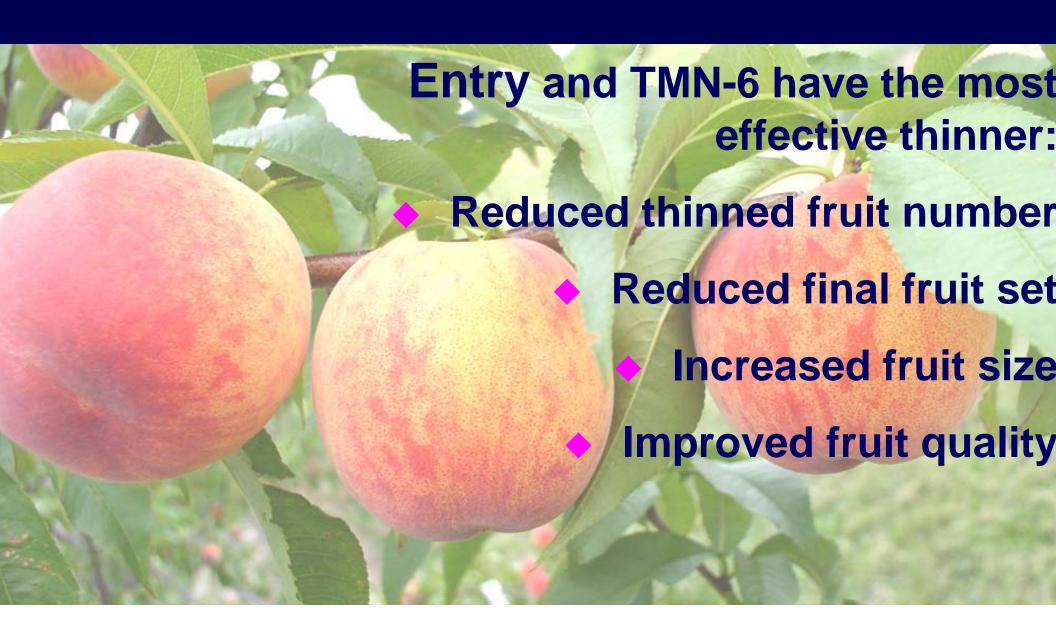
Why stone fruit tree

- Produce an abundance of flowers, of which ~10% are required to produce a full crop
- to maximize crop value by optimizing fruit size and quality
- maintain tree growth and structure

Okanagan Packinghouse Fieldmans' Meeting -

Most Promising Methods to 'Thin' Peaches

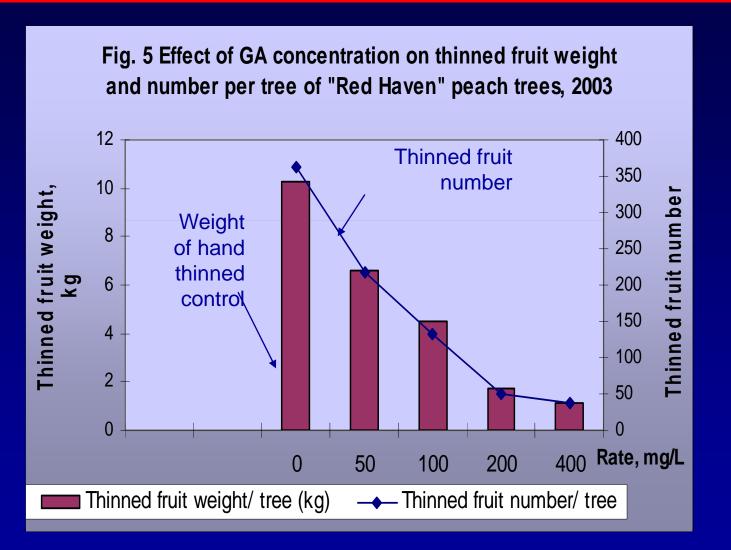

- Blossom thinning (TMN-6, Entry)
- Fruitlet thinning (Ehtrel)
- Flower inhibition (GA₃)
- Fall applications of ethephon (delays bloom and reduces flowering)


Blossom Thinning Results look promising...

Effect of various blossom thinners on number of fruit per tree of 'Harrow Diamond' peaches, 2004

Number of fruit per tree

Summary of Peach Blossom Thinning Research

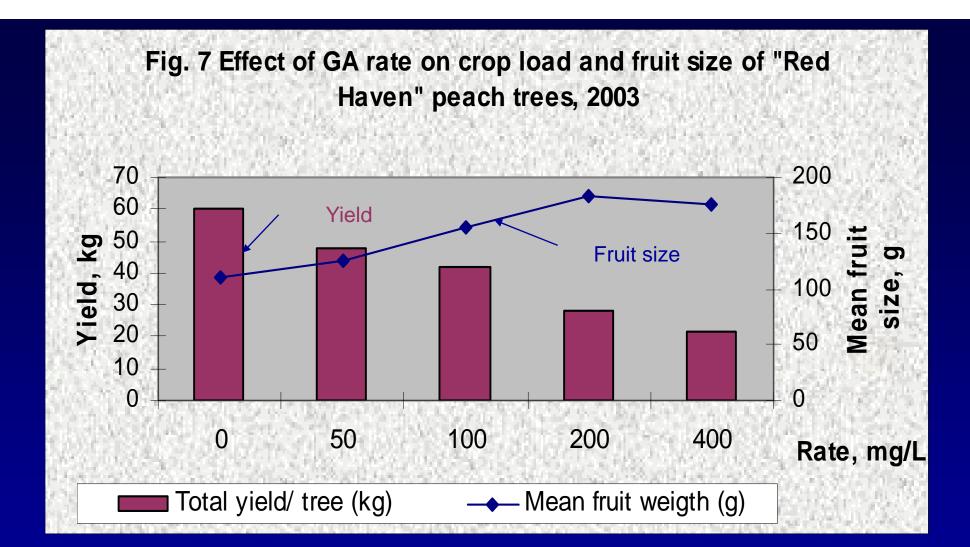

Flower Inhibitors

- GA₃ stone fruit
- GA₄₊₇ pome fruit
- Concept: reduce or prevent flower initiation, thereby minimizing the requirement for chemical and hand thinning



Effect of GA Rate on Thinned Fruit Weight and Number

GA significantly reduced the amount of hand thinning requirements (30% reduction for GA at 50 ppm)



Untreated control

Okanagan Packinghouse Fieldmans' Meeting – Feb 7 2008

- Significant GA rate and timing effect on crop load reduction;
 - Increased fruit size

Summary - Gibberellic Acid Treatments

- Did not affect current season crop density, yield, or fruit size;
 - Improved fruit quality;
- Reduced the need of hand

thinning;

- Increased fruit size;
- Improved colour and SSC;
 - Advanced maturity;
- Increased vegetative growth

Future of Plant Bioregulators in Tree Fruit

- Likely more specific on plant processes and environmentally safe compounds
- Growers need fruit thinners for stone fruit (blossom and/or fruitlet)
- Expansion in the use of GA as a flower inhibitor
- Abscisic acid and benefits for reducing water stress
- Need to clearly demonstrate the cost:benefit of PBRs

Unanswered Questions

- Can cherries be chemically thinned (to improved fruit size)?
- Is there are PBR to regulate the vegetative growth of peaches and cherries?
- Abscisic acid is the only plant hormone that has not been used commercially. Can ABA be used to reduced drought stress?