Mechanical Blossom Thinning of Peaches and Apples

John Cline, University of Guelph, Simcoe & Vineland Campuses Tel: 519-426-7127 Ext 331 Jcline@uoguelph.ca

Ontario

Ministry of Agriculture, Food and Rural Affairs

Ken Slingerland, OMAFRA Vineland Tel: 905-562-1639 Ken.Slingerland@Ontario.ca

Presentation Outline

- Horticultural basis for thinning peaches & apples
- Economics of thinning
- Various strategies past and present

Costs Associated with Thinning

- Cost: ~ \$ 500/acre (based on \$10/hr)
- Labour costs and availability
- Harvest efficiency is directly related to the amount of thinning

Horticultural Basis for thinning Peaches and Apples

- Fruit trees usually produce an excessive number of flowers
- Set of 5-10% of the flowers are needed to produce a normal crop
- to maximize crop value
- to promote return bloom (apple)
- to maintain tree growth and structure

Approaches to Thinning

- Mechanical
- Chemical Thinning (Apple)Flower Inhibition (GA)

Mechanical Thinning

Dormant <u>pruning</u>, physical removal of flowers by <u>hand</u> or specialized brushes, rope drags

Advantages

- Some approaches are selective (pruning)
- Small or damaged fruit can be removed by hand
- Indication of the remaining number of viable flowers

<u>Disadvantages</u>

- Ropes tend to thin larger buds
- Not uniform flower buds in narrow crotches angles are not adequately thinned
- Hand thinning is expensive

Surfactants, fertilizers, desiccants, oils, long chain fatty acids

Advantages

- Early in the season
- Allocating photosynthates to fruit that will persist until harvest
- Low labour requirement
- 🧉 Quick
- Relatively Inexpensive

<u>Disadvantages</u>:

- Potential for spring frosts
- Uncertainty of environmental conditions for pollination
- Unpredictable response
- Not many registered products

Basis for Mechanical Thinning

- Method to thin earlier
- Non chemical approach for apple including organic
- For peaches and cherries, there are few effective methods (apart from pruning)
- Potential future loss of carbaryl (Sevin®)

2009 Research Objectives

- To assess the effectiveness of mechanical blossom thinning on:
- Reduction in hand thinning and cost savings
- Improvement in fruit size
- Effect on yield

Mechanical String Thinner

- Designed by Fruit-Tec, Germany
- Cost: \$C 15,000 for Model 300
- Has front mount 3PH, fixed, or forklift mounts
- Model evaluated Darwin 300

IFTA Conference, Grand Rapids, Michigan

Materials and Methods

Grower Experiments: Blossom Thinning Peaches

- ◆ 8-yr old "Catherina" peach 1.8 x 2.4 m (841 t/ha) central leader
- ◆ 5-yr old "Allstar" peach 1.8 x 4.8 m (1121 t/ha) tall spindle
- Goal was to evaluate: RPM, string configuration and to compare with hand thinning

Peach: Catherina and Redhaven

Apple: Ambrosia, Gala (2), Gingergold, Honeycrisp

Treatments

- Hand thinned control
- 🍯 180 RPM, 18 strings
- 🍯 180 RPM, 9 strings
- 240 RPM, 18 strings
- 240 RPM, 9 strings

Ground speed: 2.1 miles per hr Timing: Full Bloom In other experiments evaluated

RPMs

- String configurations
- Comparison with chemical thinners (Apple)

IFTA Conference, Grand Rapids, Michigan

Peach Measurements

- Percent blossoms removed
- Fruit set (on selected branches)
- Number of fruit thinned per branch
- Time required to hand thin
- Harvest: Number of fruit per tree, yield, fruit size, split pits,

Percent flowers Removed

Allstar: 37-53 Catherina: 60-85%

Fruit set (%)

- Mechanical thinning reduced fruit
- RPM greater effect than String configuration

IFTA Conference, Grand Rapids, Michigan

Time required to thin

Labour Savings

Hand thinning per Acre 77 hrs (Allstar) 20 hrs (Catherina) Reduction

- 21-50% (Allstar)
- 10-50% (Catherina)
 Savings (at \$10 per hr)
- \$160-290 (Allstar)
- \$20-100 (Catherina)

	(hr/		
Treatment	acre)	# hrs	%
Allstar			
Hand thinned control	76.8		
180 RPM, 18 Strings	61.0	16	21
180 RPM, 9 Strings	60.0	17	22
240 RPM, 18 Strings	39.3	37	49
240 RPM, 9 Strings	47.9	29	38
Significance *	**		
P value	0.0044		
Contrasts (P value)			
Effect of Hand vs Mechanical Thinning	0.0018		
Effect of 18 vs 9 strings	0.5422		
Effect of 180 vs 240 RPM	0.0118		
Catherina			
Hand thinned control	20.3		
180 RPM, 18 Strings	13.0	7	35.9
180 RPM, 9 Strings	18.2	2	10.7
240 RPM, 18 Strings	10.2	10	49.8
240 RPM, 9 Strings	11.9	8	41.7
Significance *	***		
P value	<0.0001		
Contrasts (P value)			
Effect of Hand vs Mechanical Thinning	0.0029		
Effect of 18 vs 9 strings	0.0001		
Effect of 180 vs 240 RPM	<0.0001		

21

Yield and Fruit Size

Total Weight per Tree

No effect (Allstar)

Mechanical thinning reduced yields 9 to 45% (Catherina)

Fruit size

 Mechanical thinning increased fruit size 8 – 15%

	Fruit weight			
	Total fruit (adjusted for		or	
	weight	veight crop load)		
Treatment	(kg/tree)) (g)		
Allstar				
Hand thinned control	24.4		147	с
180 RPM, 18 Strings	24.1	4.1 15		b
180 RPM, 9 Strings	21.9		155	b
240 RPM, 18 Strings	20.0		173	а
240 RPM, 9 Strings	20.9		167	а
Significance ×	ns		**	
P value	0.1624		0.0015	
Contrasts (P value)				
Effect of Hand vs Mechanical Thinning	0.1103		0.0005	
Effect of 18 vs 9 strings	0.6302		0.1926	
Effect of 180 vs 240 RPM	0.0926		0.0011	
Catherina				
Hand thinned control	29.7	ab	198	с
180 RPM, 18 Strings	27.1	ab	218	ab
180 RPM, 9 Strings	34.6	а	219	bc
240 RPM, 18 Strings	16.1	С	231	а
240 RPM, 9 Strings	23.1	bc	212	bc
Significance ×	**		*	
P value	0.0061		0.015	
Contrasts (P value)				
Effect of Hand vs Mechanical Thinning	0.0237		0.1085	
Effect of 18 vs 9 strings	0.0017		0.4446	
Effect of 180 vs 240 RPM	0.1803		0.8209	
		lom	loon	22

Materials and Methods – Apples

- 6-yr old "Gala"/M.9 2.0 x 4.5 m (888 t/ha) vertical axe
- 6-yr old "Ambrosia"/M.26 2.0 x 4.5 m (888 t/h)
 vertical axe

Objectives:

- Compare mechanical thinning with hand thinning
- Compare mechanical thinning with chemical thinning
- Combine both mechanical and chemical thinning

Results – Apples

Significant Reduction in Crop Load (fruit /TCSA) / Fruit Weight

Treatment Comparison with Control	Details	Ambrosia	Gala 1	Gala 2	Ginger- gold	Honeycrisp
Mechanical Thinning	220 RPM, 2 sets of 9 strings, 1.8 mph	-/0	0/0	0/0	0/0	0/0
Chemical Thinning	750 mg Carbary per litre, 75 ppm 6- BA	0/+	0/+	0/0	0/+	0/0

- Mechanical thinning was comparable to hand thinning in 4 of 5 expts
- Chemical thinning provided superior fruit size in 3 of 6 expts

Future Research and Challenges

- Need to demonstrate effectives on sweet cherries
- Tree architecture (tall spindles, hedge row systems) will need to be adjusted to make best use of this technology
- Negative effects of leaf injury not understood
- Incorporate methods to reduce risk of fireblight
- Likely a useful tool for peach and organic apple growers
- Useful for apple cultivars requiring early thinning

25

IFTA Conference, Grand Rapids, Michigan

www.plant.uoguelph.ca/treefruit http://www.fruit-tec.com

http://www.abe.psu.edu/scri/

Acknowledgements

Ontario

Ministry of Agriculture, Food and Rural Affairs

Ontario Tender Fruit Producers' Marketing Board

Debbie Norton University of Guelph